Problemas del tercer capítulo de Álgebra Local

Pedro Sancho de Salas

2003

Problemas

1. Calcular el polinomio de Samuel de un anillo local regular de dimensión 2.

Resolución:

Si \mathcal{O} es un anillo local regular de dimensión 2, entonces $G_{\mathfrak{m}}\mathcal{O} = \mathcal{O}/\mathfrak{m}[x_1, x_2]$ y $S_{\mathcal{O}}(n) = \binom{n+1}{2} = \frac{(n+1)\cdot n}{2}$.

- 2. Probar que un anillo local noetheriano \mathcal{O} es un anillo regular de dimensión r si y sólo si $S_{\mathcal{O}}(n) = \binom{n+r-1}{r}$. Para la suficiencia seguir los pasos:
 - (a) \mathcal{O} es regular si y sólo si $G_{\mathfrak{m}}\mathcal{O}$ es un anillo regular en el origen.
 - (b) Si $A = k[\xi_1, ..., \xi_n]$ es una k-álgebra y $\mathfrak{m}_x = (\xi_1, ..., \xi_n)$ y \bar{k} es el cierre algebraico de k, probar que A es regular en \mathfrak{m}_x si y sólo si $A \otimes_k \bar{k}$ es regular en $\mathfrak{m}_x \otimes_k \bar{k}$.
 - (c) Si $A = k[\xi_1, \dots, \xi_n]$ es una k-álgebra graduada, con gr $\xi_i = 1$ y k con infinitos elementos, demostrar que existe un morfismo graduado finito $k[x_1, \dots, x_r] \hookrightarrow A$.
 - (d) Probar que el morfismo anterior es isomorfismo si y sólo si $S_A(n) = \binom{n+r-1}{r}$.

Resolución:

Si \mathcal{O} es un anillo regular de dimensión r, entonces $G_{\mathfrak{m}}\mathcal{O}=\mathcal{O}/\mathfrak{m}[x_1,\ldots,x_r]$ y $S_{\mathcal{O}}(n)=\binom{n+r-1}{r}$.

Veamos la suficiencia. Como $G(G_{\mathfrak{m}}\mathcal{O})=G_{\mathfrak{m}}\mathcal{O}$ y un anillo local es regular si y sólo si su graduado es un anillo de polinomios, tenemos que \mathcal{O} es regular si y sólo si $G_{\mathfrak{m}}\mathcal{O}$ es regular en el origen. Además el polinomio de Samuel de \mathcal{O} es el mismo que el de $G_{\mathfrak{m}}\mathcal{O}$ en el origen. Por tanto, podemos suponer que \mathcal{O} es la localización en el origen de una k-álgebra graduada $k[\xi_1,\ldots,\xi_n]$, con gr $\xi_i=1$.

Podemos suponer que k tiene infinitos elementos, porque una k-álgebra finito generada A es regular en un punto racional si y sólo si lo es por cambio del cuerpo base k. En efecto, el graduado de A es isomorfa graduadamente a un anillo de polinomios si y sólo si lo es por cambio de base.

Copiando la demostración del lema de normalización de Noether, tenemos que existe un morfismo graduado finito $k[x_1, \ldots, x_r] \hookrightarrow A$. Ahora bien, la dimensión del k-espacio vectorial generado por los elementos homogéneos de grado menor que n de A es $\binom{n+r-1}{r}$, que coincide con la dimensión de k-espacio vectorial generado por los elementos homogéneos de grado menor que n de $k[x_1, \ldots, x_r]$. Luego el morfismo graduado es isomorfismo.

3. Probar que la localización de $\mathbb{Z}[x]$ en cualquier punto es un anillo regular.

Resolución:

Conocemos explícitamente el espectro primo de $\mathbb{Z}[x]$:

$$\operatorname{Spec} \mathbb{Z}[x] = \left\{ \begin{array}{l} \mathfrak{p}_g = (0) \\ \mathfrak{p}_y = (p(x)) \text{ donde } p(x) \text{ es un polinomio irreducible} \\ \mathfrak{m}_x = (p, q(x)) \text{ donde } p \text{ es un número primo y } \overline{q(x)} \text{ es irreducible en } \mathbb{Z}/p\mathbb{Z}[x] \end{array} \right.$$

Ahora ya $\mathbb{Z}[x]_g = \mathbb{Q}(x)$ que es un cuerpo, luego un anillo local regular de dimensión de Krull 0. $\mathbb{Z}[x]_y$ es un anillo local regular de dimensión 1: El ideal maximal $\mathfrak{p}_y \cdot \mathbb{Z}[x]_y = (p(x))$, luego $\dim \mathbb{Z}[x]_y \leq 1$ y tenemos la cadena $(0) \subset (p(x))$ luego $\dim \mathbb{Z}[x]_y \geq 1$. En conclusión, $\dim \mathbb{Z}[x]_y = 1$ y como $\mathfrak{p}_y \cdot \mathbb{Z}[x]_y = (p(x))$ tenemos que $\mathbb{Z}[x]_y$ es regular.

 $\mathbb{Z}[x]_x$ es un anillo local regular de dimensión 2: Tenemos la cadena $(0) \subset (p) \subset (p, q(x))$, luego dim $\mathbb{Z}[x]_x \geq 2$. Por otra parte el ideal maximal está generado por dos elementos, luego $\mathbb{Z}[x]_x$ es un anillo local regular de dimensión 2.

4. Sea A un anillo noetheriano regular en todo punto. Probar que A[x] es un anillo regular en todo punto.

Resolución:

Sea $\mathfrak{p}_y \subset A[x]$ un ideal primo. Veamos que $A[x]_y$ es regular: Sea $\mathfrak{q}_{y'} = A \cap \mathfrak{p}_y$, localizando por $A - \mathfrak{q}_{y'}$ podemos suponer que A es local de ideal maximal $\mathfrak{q}_{y'}$. Haciendo cociente por $\mathfrak{q}_{y'}$ demostraremos que

$$\mathfrak{p}_y = \left\{ \begin{array}{l} (\mathfrak{q}_{y'}) \\ (\mathfrak{q}_{y'}, p(x)), \text{ con } \overline{p(x)} \text{ irreducible en } A/\mathfrak{q}_{y'}[x] \end{array} \right.$$

En el primer caso es fácil ver que $A[x]_y$ es de dimensión de Krull mayor o igual que dim A y que \mathfrak{p}_y está generado por por r parámetros, luego $A[x]_y$ es regular. En el segundo caso es fácil ver que $A[x]_y$ es de dimensión de Krull mayor o igual que dim A+1 y que \mathfrak{p}_y está generado por por r+1 parámetros, luego $A[x]_y$ es regular.

5. Sea $\mathfrak{m}_x = (x_1, \dots, x_n)$ y $\mathcal{O} = (k[x_1, \dots, x_n]/(p_1, \dots, p_r))_x$. Supongamos que dim $\mathcal{O} = n - r$. Probar que \mathcal{O} es regular si y sólo si $\operatorname{rg}(\frac{\partial p_i}{\partial x_j}(0)) = r$.

Resolución:

Si $\operatorname{rg}(\frac{\partial p_i}{\partial x_j}(0)) = r$, el ideal $I = (p_1, \dots, p_r) \subset k[x_1, \dots, x_n]_x$ está generado por funciones cuyas diferenciales en x son linealmente independientes, luego $\mathcal{O} = (k[x_1, \dots, x_n]/(p_1, \dots, p_r))_x$ es regular.

Si \mathcal{O} es regular, de dimensión n-r, entonces existen $\bar{g}_1,\ldots,\bar{g}_{n-r}$ que generan $\bar{\mathfrak{m}}_x\subset\mathcal{O}$. Por tanto, $\mathfrak{m}_x=(f_1,\ldots,f_r,g_1,\ldots,g_{n-r})\subset k[x_1,\ldots,x_n]_x$. Luego, $d_xf_1,\ldots,d_xf_r,d_xg_1,\ldots,d_xg_{n-r}$ forman una base de $\mathfrak{m}_x/\mathfrak{m}_x^2$. En conclusión, d_xf_1,\ldots,d_xf_r son linealmente independientes y $\operatorname{rg}(\frac{\partial p_i}{\partial x_i}(0))=r$.

6. Calcular los puntos de $\mathbb{Z}[\sqrt[2]{5}]$ en los que no es regular.

Resolución:

 $\mathbb{Z}[\sqrt[3]{5}] = \mathbb{Z}[x]/(x^2 - 5)$ es un anillo de dimensión 1, regular si y sólo si la diferencial de $x^2 - 5$ es no nula en todo punto cerrado de $(x^2 - 5)_0 \subset \operatorname{Spec} \mathbb{Z}[x]$.

$$(x^2 - 5)_0 = \begin{cases} (x^2 - 5) \\ \mathfrak{m}_y = (p, x^2 - 5) \ p \text{ primo y } x^2 - 5 \text{ irreducible en } \mathbb{Z}/p\mathbb{Z}[x] \\ \mathfrak{m}_z = (p, x - a) \ p \text{ primo y } a^2 = 5 \mod p \end{cases}$$

Como una base de $\mathfrak{m}_y/\mathfrak{m}_y^2$ es $d_y p$, $d_y(x^2-5)$ tenemos que en $y \mathbb{Z}[x]/(x^2-5)$ es regular.

Una base del $\mathbb{Z}/p\mathbb{Z}$ -espacio vectorial $\mathfrak{m}_z/\mathfrak{m}_z^2$ es $d_z p$, $d_z(x-a)$. Tenemos que $x^2-5=(x-a)(x+a)+bp=(x-a)^2+2a(x-a)+bp$, cuya diferencial es nula si $2a=\dot{p}$ y $b=\dot{p}$. Si p=2, entonces podemos decir que a=1 y $d_z(x^2-5)=d_z((x-1)^2)=0$, luego en $\mathfrak{m}_z=(2,x-1)$ $\mathbb{Z}[x]/(x^2-5)$ no es regular. Si $a=\dot{p}$, podemos decir que a=0 y $\mathfrak{m}_z=(p,x)$, con p=5. En este caso, $d_z(x^2-5)=d_z5$ y en $\mathfrak{m}_z=(5,x)$ $\mathbb{Z}[x]/(x^2-5)$ es regular.

7. Sean X e Y dos k-variedades algebraicas y $x \in X$ e $y \in Y$ dos puntos racionales regulares. Probar que $X \times_k Y$ es regular en (x, y).

Resolución:

Escribamos $X = \operatorname{Spec} A$, $Y = \operatorname{Spec} B$, luego $X \times_k Y = \operatorname{Spec} (A \otimes_k B)$ y $\mathfrak{m}_{(x,y)} = \mathfrak{m}_x \otimes_k B + A \otimes_k \mathfrak{m}_y$. Si dim $A_x = n$, localmente en x, $\mathfrak{m}_x = (f_1, \ldots, f_n)$ y si dim $B_y = m$ entonces localmente en y, $\mathfrak{m}_y = (g_1, \ldots, g_m)$. Ahora bien, dim $(A \otimes B)_{(x,y)} = n + m$ y localmente en (x,y), $\mathfrak{m}_{(x,y)} = (f_1, \ldots, f_n, g_1, \ldots, g_m)$ luego $X \times Y$ es regular en (x,y).

Otro modo: úsese que el cono tangente al producto de variedades es el producto de los conos tangentes a cada una de ellas.

8. Sea \mathcal{O} un anillo noetheriano local e $I \subset \mathcal{O}$ un ideal. Probar que si $G_I\mathcal{O}$ es un anillo íntegro entonces \mathcal{O} es un anillo íntegro.

Resolución:

Cuando hemos probado que los anillos locales regulares son íntegros sólo hemos usado para ello que el graduado es íntegro.

9. Calcular los anillos de valoración de \mathbb{Q} .

Resolución:

Sea $\mathcal{O}_v \subseteq \mathbb{Q}$ un anillo de valoración. Tenemos $\mathbb{Z} \subset \mathcal{O}_v$ y sea $\mathfrak{p}_x = \mathfrak{p}_v \cap \mathbb{Z}$. Entonces el morfismo $\mathbb{Z}_x \subset \mathcal{O}_v$ es dominante. Como \mathbb{Z}_x es de valoración, entonces $\mathbb{Z}_x = \mathcal{O}_v$. Por tanto, los anillos de valoración de \mathbb{Q} están en correspondencia biunívoca con los puntos de Spec \mathbb{Z} .

10. Calcular los anillos de valoración de $\mathbb{C}(x)$, que contengan a \mathbb{C} .

Resolución:

Sea $\mathcal{O}_v \subseteq \mathbb{C}(x)$ un anillo de valoración que contiene a \mathbb{C} .

Si $x \in \mathcal{O}_v$, entonces $\mathbb{C}[x] \subset \mathcal{O}_v$ y sea $\mathfrak{p}_y = \mathfrak{p}_v \cap \mathbb{C}[x]$. El morfismo $\mathbb{C}[x]_y \subset \mathcal{O}_v$ es dominante y como $\mathbb{C}[x]_y$ es de valoración tenemos que $\mathcal{O}_v = \mathbb{C}[x]_y$, donde $\mathfrak{p}_y = (x - \alpha)$ (o $\mathcal{O}_v = \mathbb{C}(x)$).

Si $x \notin \mathcal{O}_v$, entonces $v(\frac{1}{x}) > 0$, luego $\mathbb{C}[\frac{1}{x}] \subset \mathcal{O}_v$ y $\mathfrak{p}_v \cap \mathbb{C}[\frac{1}{x}] = (\frac{1}{x}) = \mathfrak{p}_{\infty}$. Por tanto, $\mathcal{O}_v = \mathbb{C}[\frac{1}{x}]_{\infty}$.

En conclusión, los anillos de valoración de $\mathbb{C}(x)$ están en correspondencia biunívoca con los puntos de $\mathbb{P}_1(\mathbb{C})$.

11. Consideremos el morfismo $\mathbb{C}[x,y] \to \mathbb{C}[[\theta]], x \mapsto \theta, y \mapsto sen\theta$. Demostrar que $\mathcal{O}_v = \mathbb{C}(x,y) \cap \mathbb{C}[[\theta]]$ es un anillo de valoración discreta, tal que $\mathcal{O}_v/\mathfrak{p}_v = \mathbb{C}$.

Resolución:

 $\mathbb{C}[[\theta]] \subset \mathbb{C}((\theta))$ es un anillo de valoración, de ideal de valoración (θ) , de cuerpo residual \mathbb{C} . Si consideramos el subcuerpo $\mathbb{C}(x,y) \subset \mathbb{C}((\theta))$, tendremos que $\mathcal{O}_v = \mathbb{C}(x,y) \cap \mathbb{C}[[\theta]]$ es un anillo de valoración discreta, tal que $\mathcal{O}_v/\mathfrak{p}_v = \mathbb{C}$.

- 12. Sea \mathcal{O}_v un subanillo de valoración del cuerpo Σ . Pruébese
 - (a) Si B es un subanillo de valoración de Σ contenido en \mathcal{O}_v , entonces existe un ideal primo \mathfrak{p}_x de B de modo que $\mathcal{O}_v = B_x$.
 - (b) Si \mathfrak{p}_x es un ideal primo del anillo de valoración B, entonces B/\mathfrak{p}_x es un subanillo de valoración de su cuerpo de fracciones.
 - (c) Sea $\pi : \mathcal{O}_v \to \mathcal{O}_v/\mathfrak{p}_v$ el morfismo de paso al cociente. Si \bar{B} es un subanillo de valoración de $\mathcal{O}_v/\mathfrak{p}_v$ entonces $\pi^{-1}(\bar{B})$ es un subanillo valoración.
 - (d) Existe una correspondencia biunívoca entre los subanillos de valoración contenidos en \mathcal{O}_v y los subanillos de valoración de $\mathcal{O}_v/\mathfrak{p}_v$.

Resolución:

- (a) Sea $\mathfrak{p}_x = \mathfrak{p}_v \cap B$. Entonces B_x es un anillo de valoración de Σ , $B_x \subset \mathcal{O}_v$ dominante, luego $\mathcal{O}_v = B_x$.
- (b) Sea $\frac{\bar{b}}{\bar{b}'}$ del cuerpo de fracciones de B/\mathfrak{p}_x . Si $\frac{b}{\bar{b}'}=b''\in B$ entonces $\frac{\bar{b}}{\bar{b}'}=\bar{b}''\in B/\mathfrak{p}_x$. Si $\frac{b}{\bar{b}'}\notin B$ entonces $\frac{\bar{b}'}{\bar{b}}=b''\in B$ entonces $\frac{\bar{b}'}{\bar{b}}=\bar{b}''\in B/\mathfrak{p}_x$. En conclusión, B/\mathfrak{p}_x es de valoración.
- (c) Sea $f \in \Sigma$. Si v(f) > 0 entonces $f \in \mathfrak{p}_v \subset \pi^{-1}(\bar{B})$. Si v(f) < 0 entonces $v(f^{-1}) > 0$ y $f^{-1} \in \pi^{-1}(\bar{B})$. Si v(f) = 0, entonces $f, f^{-1} \in \mathcal{O}_v$. Luego \bar{f} ó \bar{f}^{-1} pertenece a \bar{B} , luego f ó f^{-1} pertenece a $\pi^{-1}(\bar{B})$.
- (d) Si $B \subset \mathcal{O}_v$ es un anillo de valoración de Σ , entonces $\mathfrak{p}_v \subset B$ porque si $f \in \mathfrak{p}_v$ entonces $f^{-1} \notin \mathcal{O}_v$, luego $f^{-1} \notin B$ y $f \in B$. Ahora ya por los apartados (b) y (c) es fácil concluir.
- 13. Sea \mathcal{O}_v un anillo de valoración discreta de $\mathbb{C}(x,y)$ trivial sobre \mathbb{C} .
 - (a) Demostrar que \mathcal{O}_v contiene a $\mathbb{C}[x,y]$, o a $\mathbb{C}[\frac{1}{x},\frac{y}{x}]$, o a $\mathbb{C}[\frac{1}{y},\frac{x}{y}]$.
 - (b) Si \mathcal{O}_v contiene a $\mathbb{C}[x,y]$ y $\mathfrak{p}_v \cap \mathbb{C}[x,y] = \mathfrak{p}_x$ es una curva, demostrar que $\mathcal{O}_v = \mathbb{C}[x,y]_x$.
 - (c) Si \mathcal{O}_v contiene a $\mathbb{C}[x,y]$ y $\mathfrak{p}_v \cap \mathbb{C}[x,y] = \mathfrak{m}_x$ es un ideal maximal, por ejemplo $\mathfrak{m}_x = (x,y)$, demostrar que \mathcal{O}_v contiene a $\mathbb{C}[x_1,y_1]$ con $x_1 = x$, $y_1 = \frac{y}{x}$ o $x_1 = \frac{x}{y}$, $y_1 = y$.
 - (d) Con las notaciones obvias a partir del apartado anterior. Supongamos que $\mathfrak{p}_v \cap \mathbb{C}[x_n, y_n]$ es un ideal maximal para todo $n \in \mathbb{N}$. Demostrar que existe un $m \in \mathbb{N}$, de modo que $v(x_m)$ (o $v(y_m)$) es mínimo entre todos los $v(x_n), v(y_n)$. Demostrar que $\widehat{\mathcal{O}}_v = \lim_{\stackrel{\longleftarrow}{i}} \mathcal{O}_v/(\mathfrak{p}_v^i) = \mathbb{C}[[x_m]]$

y que por tanto $\mathcal{O}_v/\mathfrak{p}_v=\mathbb{C}$.

Resolución:

- (a) Si $v(x) \geq 0$ y $v(y) \geq 0$ entonces $\mathbb{C}[x,y] \subset \mathcal{O}_v$. Si $v(x) \leq 0$ y $v(y) \geq v(x)$ entonces $\mathbb{C}[\frac{1}{x},\frac{y}{x}] \subset \mathcal{O}_v$. Si $v(x) \leq 0$ y $v(y) \leq v(x)$ entonces $\mathbb{C}[\frac{1}{y},\frac{x}{y}] \subset \mathcal{O}_v$.
- (b) $\mathbb{C}[x,y]_x$ es un anillo local de dimensión 1 de ideal maximal principal, luego es un anillo de valoración. \mathcal{O}_v lo domina, luego coincide con él.
- (c) Si $v(\frac{x}{y}) \geq 0$ entonces $\mathbb{C}[y, \frac{x}{y}] \subset \mathcal{O}_v$. Si $v(\frac{x}{y}) \leq 0$ entonces $\mathbb{C}[x, \frac{y}{x}] \subset \mathcal{O}_v$.
- (d) La existencia de m es obvia, ya que del conjunto de números naturales $\{v(x_n), v(y_n)\}_{n\in\mathbb{N}}$ existe un m, tal que $v(x_m)$ (ó $v(y_m)$ es mínimo). Tenemos que $y_{m+1} = \frac{y_m + a}{x_m}$, es decir, $y_m = a + x_m \cdot y_{m+1}$ (y $x_{m+1} = x_m$). Siguiendo este proceso, tenemos que

$$y_m = (\sum_{i=0}^n a_i x_m^i) + x_m^{n+1} \cdot y_{m+n+1}$$

Por tanto,

$$\mathbb{C}[[x_m]] = \lim_{\substack{\longleftarrow \\ n}} \mathbb{C}[x_m, y_m] / (\mathfrak{p}_v^n \cap \mathbb{C}[x_m, y_m]) \hookrightarrow \hat{\mathcal{O}}_v$$

Ahora bien, $\mathcal{O}_v = \hat{\mathcal{O}}_v \cap \mathbb{C}(x,y) = \mathbb{C}[[x_m]] \cap \mathbb{C}(x,y)$, por tanto $\mathcal{O}_v \hookrightarrow \mathbb{C}[[x_m]]$, $v(x_m) = 1$ y $\hat{\mathcal{O}}_v = \mathbb{C}[[x_m]]$.

- 14. Sea A un anillo íntegro y G un grupo aditivo totalmente ordenado. Sea $v\colon A-\{0\}\to G$ una aplicación tal que
 - (a) v(fg) = v(f) + v(g) y v(1) = 0.
 - (b) $v(f+g) \ge \min\{v(f), v(g)\}\$

Probar que v extiende a una valoración del cuerpo de fracciones de A.

Resolución:

Todo morfismo de un semigrupo en un grupo extiende de modo único al grupo (del modo obvio). Así pues, sólo nos falta probar que la extensión, que seguimos llamando v cumple (b). Ahora bien, multiplicando por una $t \in A$, podemos suponer que ft, gt y (f+g)t pertenecen a A. Como $v((f+g)t) \ge \min\{v(ft), v(gt)\}$ por (a), $v(f+g) \ge \min\{v(f), v(g)\}$.

15. Sea $\mathbb{Z} \times \mathbb{Z}$ con el orden lexicográfico. Fijemos $q(x,y) \in \mathbb{C}[x,y]$ y un punto q de q(x,y) = 0. Consideremos la aplicación $v \colon \mathbb{C}[x,y] - \{0\} \to \mathbb{Z} \times \mathbb{Z}$, definida por, v(p(x,y)) = (n,m), donde $p(x,y) = q(x,y)^n \cdot r(x,y)$ (r(x,y) no divisible por q(x,y)) y m es la multiplicidad de p(x,y) en q. Demostrar que v extiende a una valoración de $\mathbb{C}(x,y)$.

Resolución:

16. Sea α un número irracional positivo. Demostrar que la aplicación $v : \mathbb{C}[x,y] \to \mathbb{Z} + \mathbb{Z}\alpha$, definida por $v(\sum c_{n,m}x^ny^m) = \min\{n + m\alpha | c_{n,m} \neq 0\}$ extiende a una valoración de $\mathbb{C}(x,y)$.

Resolución:

- 17. Sea Σ un cuerpo. Un valor absoluto en Σ es una aplicación $f \colon \Sigma \to \mathbb{R}^+$ satisfaciendo los siguientes axiomas
 - (a) f(x) = 0 si y sólo si x = 0.
 - (b) f(xy) = f(x)f(y), para todo $x, y \in \Sigma$.
 - (c) $f(x+y) \leq C \max\{f(x), f(y)\}$ para todo $x, y \in \Sigma$ y cierto $C \in \mathbb{R}^+$.

Pruébese que existe una correspondencia biunívoca entre los valores absolutos con C=1 ("no arquimedianos") y las valoraciones de Σ con valores en \mathbb{R} . (Pista: Dado un valor absoluto f, pruébese que $\log(-f)$ es una valoración.)

Resolución:

18. Sea $\tilde{\mathbb{C}} = \mathbb{C} \coprod \infty$. Impongamos $-\infty = \infty$, $0^{-1} = \infty$, $\infty^{-1} = 0$; $a + \infty = \infty + a = \infty$, para todo $a \in \mathbb{C}$; $\infty \cdot a = a \cdot \infty = \infty$, para todo $a \in \tilde{\mathbb{C}}$. Sea K un cuerpo. Sea $f : K \to \tilde{\mathbb{C}}$ una aplicación tal que

$$f(x+y) = f(x) + f(y), f(x \cdot y) = f(x) \cdot f(y), f(1) = 1$$

siempre que los términos escritos tengan todos sentido. Demostrar que los $x \in K$ tales que $f(x) \neq \infty$ (es decir, valor finito) forman un subanillo de valoración de K. ²

Resolución:

19. Pruébese que el anillo local de k[x,y] en el origen es íntegramente cerrado pero no es un anillo de valoración.

Resolución:

El ideal (x,y) no es principal porque $\dim_k(x,y)/(x,y)^2=2$, por tanto, el anillo local de k[x,y] en el origen pero no es un anillo de valoración. Por otra parte, k[x,y] es íntegramente cerrado en su cuerpo de fracciones porque es un dominio de factorización única. Las localizaciones de dominios íntegramente cerrados son íntegramente cerrados.

20. Sea \mathcal{O} un anillo local íntegro. Probar que el cierre entero de \mathcal{O} en su cuerpo de fracciones es la intersección de los anillos de valoración del cuerpo de fracciones que dominan a \mathcal{O} .

Resolución:

Sea Σ el cuerpo de fracciones de \mathcal{O} . Si $\xi \in \Sigma$ no es entero sobre \mathcal{O} , veamos que (\mathfrak{m}, ξ^{-1}) es un ideal propio de $\mathcal{O}[\xi^{-1}]$: Si $(\mathfrak{m}, \xi^{-1}) = (1)$, entonces existe una relación $m_0 + \sum_i a_i \xi^{-i} = 1$, con

¹En Bourbaki, Commutative Algebra, puede verse: Se verifica que $C \ge 1$. Si $C \le 2$ la condición tercera, supuestas las dos primeras, equivale a $f(x+y) \le f(x) + f(y)$. Todo valor absoluto define la topología donde la base de entornos de un punto $x \in \Sigma$ es $\{y \in \Sigma | f(x-y) < \epsilon\}$, para $\epsilon \in \mathbb{R}^+$. Si identificamos dos valores absolutos si definen la misma topología, podremos suponer que C=1 o C=2 (tomando f^{α} , para cierto $\alpha \in \mathbb{R}^+$), denominado valor absoluto "arquimediano". Así puede verse que los valores absolutos de ℚ están en correspondencia con el conjunto de números primos positivos junto con el valor absoluto "arquimediano" estándar de ℚ. El teorema de Gelfand-Mazur, dice que si Σ es una \mathbb{R} -extensión de cuerpos, y posee una norma compatible con la estructura de álgebra de Σ , entonces Σ es \mathbb{R} o \mathbb{C} . El teorema de Ostrowski dice que si f es un valor absoluto arquimediano, entonces Σ es una subextensión densa de \mathbb{R} o \mathbb{C} y f es equivalente al valor absoluto estándar.

²Sea K es el cuerpo de funciones meromorfas sobre una variedad analítica compleja de dimensión 1. Entonces $f\colon K\to \tilde{\mathbb{C}},\,g\mapsto g(z_0)$, siendo z_0 un punto de la variedad, es un ejemplo del párrafo anterior.

 $m_0 \in \mathfrak{m}$ y $a_i \in \mathcal{O}$. Luego $\sum_i a_i \xi^{-i}$ es invertible y $(\xi^{-1}) = (1)$, $\xi \in \mathcal{O}[\xi^{-1}]$ y ξ es entero sobre \mathcal{O} , contradicción. Sea pues \mathfrak{m}_x un ideal maximal que contenga a (\mathfrak{m}, ξ^{-1}) y \mathcal{O}_v un anillo de valoración que domine a $\mathcal{O}[\xi^{-1}]_x$. Entonces $v(\xi^{-1} > 0$ y $\xi \notin \mathcal{O}_v$.

Luego el cierre entero que está incluido en la intersección de los anillos de valoración del cuerpo de fracciones que dominan a \mathcal{O} , ha de coincidir con dicha intersección.

21. Sea A un anillo noetheriano íntegro de dimensión 1. Sea \bar{A} el cierre entero de A en su cuerpo de fracciones. Dado $a \in A$ no nulo, probar que $l_A(A/aA) \ge l_A(\bar{A}/a\bar{A})$. Probar que \bar{A} es un anillo noetheriano de dimensión 1.

Resolución:

A/aA es un anillo noetheriano de dimensión cero, luego de longitud finita.

l(M/N) es igual al número máximo de eslabones que podemos introducir en la inyección $N \hookrightarrow M$.

Sea B una A-subálgebra finita de \bar{A} . Del diagrama conmutativo

se tiene que $l_A(A/aA) = l_A(B/aB)$. Como \bar{A} el límite inductivo de sus A-subálgebras finitas, se obtiene que $l_A(A/aA) \ge l_A(\bar{A}/a\bar{A})$.

Dada una cadena de ideales de \bar{A} , $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq$, y dado $a \in I_1$ no nulo, podemos suponer, sustituyendo A por A[a], que $a \in A$. Ahora bien, la cadena escrita estabiliza, porque haciendo cociente por $a\bar{A}$, estabiliza, ya que $\bar{A}/a \cdot \bar{A}$ es de longitud finita. En conclusión, \bar{A} es noetheriano.

- 22. Sea \mathcal{O} un anillo local noetheriano íntegro, Σ el cuerpo de fracciones de \mathcal{O} y $\mathfrak{m}=(a_1,\ldots,a_n)$ su ideal maximal. Probar
 - (a) Si \mathcal{O}_v es un ideal de valoración de Σ que domina a \mathcal{O} , para algún i, \mathcal{O}_v contiene a $\mathcal{O}[\frac{a_1}{a_i},\ldots,\frac{a_n}{a_i},a_i]=B$. Además, $\mathfrak{m}\cdot B$ es un ideal principal propio de B.
 - (b) Existe un anillo local noetheriano de dimensión 1, en Σ , que domina a \mathcal{O} .
 - (c) Existe un anillo de valoración discreta en Σ que domina a \mathcal{O} .
 - (d) El cierre entero de \mathcal{O} en su cuerpo de fracciones es la intersección de los anillos de valoración discreta que lo dominan.

Resolución:

(a) Del conjunto $\{\frac{a_k}{a_l}\}_{k,l}$ sea $\frac{a_j}{a_i}$ de valor máximo. Entonces, $v(\frac{a_k}{a_i}) \geq 0$, porque si $v(\frac{a_k}{a_i}) < 0$, entonces

$$v(\frac{a_j}{a_k}) = v(\frac{a_j}{a_i} \cdot \frac{a_i}{a_k}) = v(\frac{a_j}{a_i}) - v(\frac{a_k}{a_i}) > v(\frac{a_j}{a_i})$$

Por tanto, $\mathcal{O}\left[\frac{a_1}{a_i}, \dots, \frac{a_n}{a_i}, a_i\right] \subset \mathcal{O}_v$. Además, $\mathfrak{m} \cdot B = (a_i)$.

- (b) Si \mathfrak{p}_x es un ideal primo mínimo de B con la condición de contener a $\mathfrak{m} \cdot B$ entonces B_x es dimensión 1, pues $\mathfrak{m} \cdot B$ es principal. Además B_x domina a \mathcal{O} .
- (c) El cierre entero de B_x , \bar{B}_x es un anillo noetheriano de dimensión 1. Si localizamos en cualquier ideal primo de la fibra de x obtenemos un anillo de valoración discreta que domina B_x y a \mathcal{O} .
- (d) Pruébese como en el problema 20.
- 23. Sea A un anillo noetheriano íntegro y \bar{A} el cierre entero de A en su cuerpo de fracciones.
 - (a) Si $0 \neq I \subset A$ es un ideal, definir inclusiones naturales, $A \hookrightarrow \operatorname{Hom}_A(I, I) \hookrightarrow \bar{A}$.
 - (b) Si $0 \neq I \subset A$ es un ideal radical, probar que $\operatorname{Hom}_A(I,A) \cap \bar{A} = \operatorname{Hom}_A(I,I)$.

Resolución:

- (a) Sea Σ el cuerpo de fracciones de A. Localizando en el punto genérico, es fácil ver que todo endomorfismo de I, es la homotecia por un $f \in \Sigma$, tal que $f \cdot I \subset I$. Además, esta f verifica el polinomio característico (fijemos un sistema generador de I), luego es entera sobre A.
- (b) Un morfismo $I \to A$ es una homotecia por cierta $f \in \Sigma$. Supongamos que f es entera sobre A. Es decir, sea $f \in \operatorname{Hom}_A(I,A) \cap \bar{A}$. Si $f \cdot I \not\subseteq I$, entonces existe un ideal primo $\mathfrak{p}_x \subset A$ que contiene a I pero no a $f \cdot I$. Localizando en x, podemos suponer que $f \cdot I = A$. Por tanto, I es principal, $I = (f^{-1})$. Ahora bien, $f \notin A[f^{-1}] = A$, luego f no es entera sobre A, contradicción. Por tanto, $f \in \operatorname{Hom}_A(I,I)$ y $\operatorname{Hom}_A(I,A) \cap \bar{A} = \operatorname{Hom}_A(I,I)$.
- 24. Sea A un anillo noetheriano íntegro y \bar{A} el cierre entero de A en su cuerpo de fracciones. Sea $Y \subset \operatorname{Spec} A$ el conjunto de los puntos x, tales que A_x no sea íntegramente cerrado en su cuerpo de fracciones. Sea I un ideal radical no nulo que se anule en todo Y.
 - (a) Dada $h = \frac{f}{g} \in \bar{A}$, probar que $(\operatorname{Anul}(hA/(hA \cap A)))_0 = \{x \in \operatorname{Spec} A \colon h \notin A_x\} \subset Y$.
 - (b) Probar que existe $n \in \mathbb{N}$ de modo que $I^n \subset \text{Anul}(hA/(hA \cap A))$.
 - (c) Probar que si $A = \text{Hom}_A(I, I)$ entonces A es íntegramente cerrado en su cuerpo de fracciones.

Resolución:

(a) Si $h \in A_x$, entonces $hA_x \cap A_x = hA_x$ y $(hA/(hA \cap A))_x = 0$. Si $h \notin A_x$, entonces $hA_x \cap A_x \neq hA_x$ y $(hA/(hA \cap A))_x \neq 0$. En conclusión,

$$(\operatorname{Anul}(hA/(hA\cap A)))_0 = \{x \in \operatorname{Spec} A \colon h \notin A_x\}$$

Si $x \notin Y$, entonces $\bar{A}_x = A_x$ y por tanto, $h \in A_x$. Luego,

$$\{x \in \operatorname{Spec} A \colon h \notin A_x\} \subset Y$$

- (b) Por (a), $I \subset \operatorname{rad}(\operatorname{Anul}(hA/(hA\cap A)))$, luego existe un $n \in \mathbb{N}$ de modo que $I^n \subset \operatorname{Anul}(hA/(hA\cap A))$.
- (c) Dada $f \in I^n$, tenemos que $f \cdot hA \subseteq A$, luego $h \in Hom_A(fA, A) \cap \bar{A} = Hom_A((f), (f)) = A$. En conclusión, $\bar{A} = A$.